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CS103 Midterm Exam

This midterm exam is open-book, open-note, open-computer, but closed-network.  This means 
that if you want to have your laptop with you when you take the exam, that's perfectly fine, but 
you must not use a network connection.  You should only use your computer to look at notes 
you've downloaded in advance.  Although you may use laptops, you must hand-write all of your 
solutions  on this  physical  copy of the  exam.  No electronic  submissions  will  be considered 
without prior consent of the course staff.

SUNetID:

Last Name:

First Name:

I accept both the letter and the spirit of the honor code.  I have not received any assistance on  
this test, nor will I give any.

(signed) _______________________________________________________________

You have three hours to complete this midterm.  There are 180 total points, and this midterm is 
worth 15% of your total grade in this course.  You may find it useful to read through all the 
questions to get a sense of what this midterm contains.  As a rough sense of the difficulty of each 
question, there is one point on this exam per minute of testing time.

Question Points Grader

(1) Translating into Logic (20) / 20

(2) Cantor's Theorem Revisited (25) / 25

(3) Tournament Victory Chains (45) / 45

(4) Composing Relations (45) / 45

(5) Inherent Complexity (45) / 45

(180) / 180

Good luck!
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Problem One: Translating into Logic (20 points total)

In each of the following, you will be given a list of first-order predicates and functions along 
with an English sentence.  In each case, write a statement in first-order logic that expresses the 
indicated sentence.  The statement you write should can use any first-order construct (equality, 
connectives, quantifiers, etc.), but you must only use the predicates and functions provided.

As an example, if you were given just the predicates Integer(x), which returns if x is an integer, 
and the function  Plus(x, y), which returns  x +  y, you could write the statement “there is some 
even integer” as

n. k. (Integer(n)  Integer(k)  Plus(k, k) = n)∃ ∃ ∧ ∧

since this asserts that some integer n is equal to 2k for integer k.  However, you could not write

n. (Integer(n)  Even(n))∃ ∧

because there is no  Even predicate.  The point of this question is to get you to think how to 
express certain concepts in first-order logic given a limited set of predicates, so feel free to write 
any formula you'd like as long as you don't invent your own predicates or functions.

(i) It's Turtles All The Way Down (5 Points)

Given the predicates

Turtle(t), which says that t is a turtle, and

Beneath(s, t), which says that s is beneath t,

write a statement in first-order logic that says “below every turtle is some other turtle.”
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(ii) The Well-Ordering Principle (15 Points)

Given the predicates

Set(S), which says that S is a set,

x  ∈ S, which says that x is an element of S, and

x < y, which says that x is less than y,

along with the constant ℕ, which represents the set of all natural numbers, write a statement in 
first-order logic that says “every nonempty set of natural numbers has a least element.”
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Problem Two: Cantor's Theorem Revisited (25 points)

Cantor's theorem states that |S| < | (℘ S)| for all sets S.  Among other things, this theorem says that 
|ℕ| < | (℘ )|, meaning that there are strictly more sets of natural numbers ℕ than natural numbers.

Let's denote by ℘<ω(S) the set of all finite subsets of set S.  For example, {1, 2, 3}  ∈℘<ω(ℕ), but 
ℕ  ∉ ℘<ω(ℕ) because  ℕ is infinite.  Amazingly, it turns out that there are the same number of 
natural numbers as there are finite subsets of natural numbers; that is, |ℕ| = |℘<ω(ℕ)|.

This result seems surprising, and so it might be tempting to try to disprove it.  Of course, since 
the result actually is true, it cannot be disproven.  But since when has that stopped people from 
trying?

(i) Injectivity, but not Surjectivity (10 Points)

Below is an incorrect proof that suggests that |ℕ| ≠ |℘<ω(ℕ)|.  This proof contains a logical error 
that renders it invalid.  Identify the flaw in the reasoning.  You do not need to give an explicit 
counterexample; just state what logical error is being made.

Theorem: |ℕ| ≠ |℘<ω(ℕ)|.

Proof: Consider the function f : ℕ → ℘<ω(ℕ) defined as follows: for any n  ∈ℕ, let
f(n) = {n}.  To see that this is a valid function from ℕ to ℘<ω(ℕ), note that for any
n  ∈ℕ, we know that {n}  ⊆  ℕ and that {n} is finite.  Thus f(n)  ∈℘<ω(ℕ).

We claim that f is injective.  To see this, consider any n0  ∈ℕ and n1  ∈  such thatℕ  
f(n0) = f(n1).  We will prove that n0 = n1.  Since f(n0) = f(n1), we know that {n0} = {n1}. 
Since two sets are equal iff they contain the same elements, this means that n0 = n1, as 
required.

However, f is not surjective.  To see this, note that {0, 1} is a finite subset of ℕ, so 
{0, 1}  ∈℘<ω(ℕ).  However, there is no n  ∈ℕ such that f(n) = {0, 1}, so f is not 
surjective.  Since f is not surjective, it is not bijective.  Thus | | ≠ |ℕ ℘<ω( )| . ■ℕ
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(ii) The Diagonal Argument Revisited (15 Points)

In the proof of Cantor's theorem, we used a diagonal argument to show that |S| ≠ | (℘ S)|.  Below 
is an incorrect proof that tries to use diagonalization to show that |ℕ| ≠ |℘<ω(ℕ)|.  As with part 
(i), this proof contains a logical error that renders it invalid.  Identify the flaw in the reasoning. 
You do not need to give an explicit counterexample; just state what logical error is being made.

Theorem: |ℕ| ≠ |℘<ω(ℕ)|.

Proof: By contradiction; assume that | | = |ℕ ℘<ω( )|, so there is a bijection ℕ f :  → ℕ ℘<ω( ).ℕ  
Consider the set D = { n   | ∈ℕ n  ∉ f(n) }.  Since f is a bijection, it is surjective, so there 
must be some d   such that ∈ℕ f(d) = D.  Now, either d  ∈D, or d  ∉D.  We consider these 
cases separately: 

Case 1: d  ∈D.  By our definition of D, this means that d  ∉ f(d).  However, we know 
that f(d) = D, so this means that d  ∉D, contradicting the fact that d  ∈D. 

Case 2: d  ∉D.  By our definition of D, this means that d  ∈ f(d).  However, we know 
that f(d) = D, so this means that d  ∈D, contradicting the fact that d  ∉D. 

In either case we reach a contradiction, so our assumption must have been wrong.  Thus 
| | ≠ |ℕ ℘<ω( )|. ■ℕ
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Problem Three: Tournament Victory Chains (45 points)

Consider any tournament graph for n > 0 players.  Let's define a victory chain as a sequence of 
players where

• Every player is in the sequence,

• No player is repeated in the sequence, and

• For every player in the sequence (except the last), that player beats the player that comes 
after her.

For example, consider this tournament graph:

A

B

C

D

E

One possible victory chain is A → E → B → C → D, since A beat E, E beat B, B beat C, and C 
beat D.  Another possible victory chain is C → D → E → B → A, since C beat D, D beat E, E 
beat B, and B beat A.  However, B → A → E → C → D is not a victory chain, since E lost to C. 
B → A → E → B → C → D is not a victory chain because B is repeated in the sequence, and 
D → A → E → B is not a victory chain because C is nowhere in the chain.

Prove that any tournament with n > 0 players has at least one victory chain.  Although you have 
proven in the problem set that all tournament graphs have at least one tournament winner, you do 
not need to use that result in this proof.  That said, you still might find induction useful.



7 / 13

(extra space for Problem Three, if you need it)
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(extra space for Problem Three, if you need it)
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Problem Four: Composing Relations (45 Points)

Suppose that  R and  S are  binary  relations  over some set  A.   The  composition of  R and  S, 
denoted S  ∘ R, is the relation defined as follows:

{ (x, y)  ∈ A × A | there is some z  ∈ A such that xRz and zSy }

Restated in English, x(S  ∘ R)y iff there is some z such that xRz and zSy.

One interesting special case to consider is the composition of a relation with itself.  Given a 
binary relation R, the relation R  ∘ R is defined as follows: x(R  ∘ R)y iff there is some z such that 
xRz and zRy.  We use the notation R2 to denote R  ∘ R.

Given a  relation  R,  what  is  the  connection  between  R and  R2?   Are  these  relations  always 
different?  Are they always the same?  In this problem, you will explore this question.

(i) Equivalence Relations (15 Points)

Prove or disprove: If R is an equivalence relation over a set A, then R = R2.  Recall that R = R2 

when for every x  ∈ A and y  ∈ A, we have that xRy iff xR2y.
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(ii) Partial Orders (15 Points)

Prove or disprove: If R is an partial order over a set A, then R = R2.
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(iii) Strict Orders (15 Points)

Prove or disprove: If R is an strict order over a set A, then R = R2.
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Problem Five: Inherent Complexity (45 points total)

As mentioned in lecture, regular languages are precisely the languages that can be accepted by 
some DFA.  However, within the set of regular languages, some languages are more complicated 
than others.

For any natural number  n, consider the language  Ln = {  w |  w has length at least  n } over the 
alphabet { 0, 1 }.  For example, L0 = Σ*, since every string has length at least 0.  The language 
L1 is the set {0, 1, 00, 01, 10, 11, … }, and L5 = { 00000, 00001, 00010, … }.

Prove that  for  any  n  ∈ ℕ, that  there  does  not  exist  a  DFA  D satisfying  the following two 
properties:

• (ℒ D) = Ln (that is, D is a DFA for the language Ln), and

• D has strictly fewer than n + 1 states.

This shows that some regular languages are inherently complicated, since any DFA for them 
must be at least some minimum size.

(Hint: Use the pigeonhole principle.  If the DFA has fewer than n + 1 states, then what would  
happen if you ran the DFA on n + 1 specially-chosen strings?)
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(extra space for Problem Five, if you need it)
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